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Abstract
Wildfires can negatively affect ectomycorrhizal (EM) fungal communities. However, potential shifts in community structures 
due to wildfires have rarely been evaluated in the forests of eastern Eurasia, where surface fires are frequent. We investigated 
EM fungal communities in a Larix gmelinii-dominated forest that burned in 2003 in Zeya, in the Russian Far East. A total 
of 120 soil samples were collected from burned and adjacent unburned forest sites. The EM fungal root tips were morpho-
typed and internal transcribed spacer (ITS) sequences were obtained for fungal identification. We detected 147 EM fungal 
operational taxonomic units, and EM fungal richness was 25% lower at the burned site than at the unburned site. EM fungal 
composition was characterized by the occurrence of disturbance-adapted fungi (Amphinema and Wilcoxina) at the burned 
site and late-successional fungi (Lactarius, Russula and Cortinarius) at the unburned site. These findings suggest that the 
EM fungal communities did not recover to pre-fire levels 16 years after the fire. Suillus species were the dominant EM 
fungi on L. gmelinii, with greater richness and frequency at the burned site. Both Larix and Suillus exhibit adaptive traits to 
quickly colonize fire-disturbed habitats. Frequent surface fires common to eastern Eurasia are likely to play important roles 
in maintaining Larix forests, concomitantly with their closely associated EM fungi.
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Introduction

Many dominant trees in boreal forests are obligatory associ-
ated with ectomycorrhizal (EM) fungi. EM fungi improve 
the transfer and uptake of nutrients and water to their host 
plants, and in turn, receive photosynthetic carbon from their 
hosts (Smith and Read 2008). Field evidence has shown that 
limited access to EM fungi can reduce seedling survival 
and growth (Nara 2006a; Teste and Simard 2008) and forest 
expansions may fail without compatible EM fungi (Briscoe 
1959; Nuñez et al. 2009). Therefore, the presence of EM 
fungal inocula is essential in disturbed habitats to facilitate 

the establishment of seedlings and for subsequent forest 
development.

Forest fires are natural disturbance agents that can affect 
soil fungal communities (Cairney and Bastias 2007; Pressler 
et al. 2019; Yang et al. 2020). EM fungi may be physically 
removed by a direct transfer of heat and the combustion 
of surface organic matter during a fire (Smith et al. 2004; 
Cairney and Bastias 2007). Fires may also indirectly affect 
EM fungal communities by altering the host plant commu-
nities, the physical and chemical properties of soil, and the 
microclimate (Certini. 2005; Hart et al. 2005). EM fungal 
richness is reported to decrease immediately after fires but 
may recover quickly in the early stages of forest develop-
ment (Treseder et al. 2004; Twieg et al. 2007; LeDuc et al. 
2013; Kipfer et al. 2011). In addition, the post-fire commu-
nity composition of EM fungi generally shifts with stand age 
(Twieg et al. 2007; LeDuc et al. 2013; Yang et al. 2020). The 
responses of EM fungal communities to fire vary according 
to the intensity and severity of the fire events (Jonsson et al. 
1999; Reazin et al. 2016; Owen et al. 2019), the fire return 
interval of an ecosystem (Buscardo et al. 2010; 2012) and 
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local environmental factors (e.g., vegetation and topography) 
(Rincón and Pueyo 2010; Buscardo et al. 2011). For exam-
ple, high-intensity fires that remove the organic layer may 
dramatically affect EM fungal composition (Visser 1995; 
Dahlberg et al. 2001), while low-intensity fires that leave 
organic layers undamaged may not alter EM fungal composi-
tion (Jonsson et al. 1999). The effect of fire on the EM fungal 
community is region- and context-dependent.

Predicting the effects of fires on ecosystem processes is 
increasingly important in high-latitude boreal forests, where 
fires are frequent. Changing fire regimes due to human land 
use and climate change can have significant impacts on car-
bon emissions from the vast forests of Eurasia (Rogers et al. 
2015; Shuman et al. 2017). In this region, Siberian Larix 
forests cover approximately 263 million ha, forming the 
world’s most extensive coniferous forests (Abaimov 2010). 
The estimated annual burned area in eastern Eurasia is about 
1.4–2.0 Mha year−1 with high interannual variability (Rogers 
et al. 2015), and the current fire return interval is estimated 
to range from 53 to 80 years in the south to 200–300 years 
in the Arctic regions (de Groot et al. 2013; Ponomarev et al. 
2016). Historically, high-frequency surface fires are com-
mon in Eurasia (de Groot et al. 2013; Rogers et al. 2015). 
Larix trees can survive during surface fires by having thick 
bark and high leaf moisture content (Shuman et al. 2017). 
However, the number and extent of wildfires have been 
increasing and stand-replacing fires are becoming more 
frequent in eastern Eurasia because of climate warming 
(Ponomarev et al. 2016; Schaphoff et al. 2016). Some fire-
adapted Pinus species (e.g., P. contorta and P. banksiana) 
in North America produce serotinous cones that open with 
heat, which enable rapid regeneration after stand-replacing 
fires. By contrast, Larix species produce wind-dispersed 
seeds annually, and nearby seed sources are necessary for 
post-fire recruitment if the existing trees are heavily dam-
aged. Changes in fire regimes from frequent surface fires to 
more intense crown fires in eastern Eurasia may influence 
post-fire forest recovery processes. Despite the global impor-
tance of Larix forests, the potential effects of fires on EM 
fungal communities remain largely understudied compared 
with the boreal forests of North America and Europe (Dove 
and Hart 2017; Taudière et al. 2017).

Larix species are associated with suilloid fungi (i.e., 
Suillus and Rhizopogon), which exhibit strong specificity 
to Pinaceae hosts (Molina et al. 1999; Nguyen et al. 2016; 
Miyamoto et al. 2019). Suilloid fungi are often detected in 
the roots of Pinus and Pseudotsuga in fire-disturbed forests, 
reflecting their pioneer strategy in relation to fires (Baar 
et al. 1999; Barker et al. 2013; Cowan et al. 2016; Glassman 
et al. 2016). Suilloid fungi are effective spore dispersers by 
producing a large number of spores that can be transported 
over long distances by wind and animals (Ashkannejhad and 
Horton 2006; Peay et al. 2012). Some suilloid fungi also 

produce heat-resistant or heat-activated spores that remain 
viable in deeper soils after a fire, enabling them to quickly 
colonize fire-disturbed habitats (Izzo et al. 2006; Peay et al. 
2009; Bruns et al. 2019). The above traits of suilloid fungi 
imply that they are an important component of the EM fun-
gal community in the post-fire Larix forests of Eurasia. By 
contrast, Larix species are also associated with many broad 
host range EM fungal taxa (Leski and Rudawska 2012; Han 
et al. 2017; Kennedy et al. 2018). The high compatibility of 
EM fungi between Larix and other neighboring trees can 
occur in early- to late-successional forests, where trees may 
potentially benefit from the establishment of common myc-
orrhizal networks (Nara 2006b; Rog et al. 2020). The level 
of EM fungal specificity and compatibility may shift with 
forest development following fire disturbances; however, this 
remains to be elucidated.

In this study, we evaluated the EM fungal communities 
of Larix forests in the Russian Far East, where a large for-
est fire occurred in 2003. The objective of this study was to 
characterize the EM fungal community structures of a for-
est that burned 16 years ago. We investigated (1) whether 
the EM fungal richness and composition differed between 
a burned forest and a nearby unburned mature forest, and 
(2) whether Larix-associated EM fungal communities were 
dominated by narrow host range fungal taxa (i.e., suilloid), 
and whether their dominance increases in the fire-disturbed 
forest. Furthermore, we investigated the relative importance 
of the fire event, host identity, and soil properties in explain-
ing the variation in EM fungal composition.

Methods

Study site

The study area was located in the Zeysky State Nature 
Reserve (53° 50′ N, 127° 10′ E), about 500 km north of 
Blagoveshchensk in Amur Oblast, Russia. The area is 
characterized by a cold and dry continental climate with 
discontinuous permafrost soils. The mean annual, January 
and July temperatures are − 0.7 °C, − 19.3 °C and 19.1 °C, 
respectively, with a mean annual precipitation of 526.8 mm, 
of which 77% falls from July to September (Amur Center for 
Hydrometeorology and Environmental Monitoring 2015). 
Frequent surface fires of low to medium severity are com-
mon in this region.

A wildfire burned ca. 24,500 ha of the forest in the sum-
mer of 2003. It was a long-lasting ground fire, which dam-
aged root systems, causing trees to gradually die and fall 
several years after the fire. In 2016, two permanent plots 
(50 × 50 m) were established, the first in a burned area 
(treatment) and the second in an unburned area (control), 
with a distance of 800 m separating the two plots. In the 
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burned area, the fire killed 72% of Larix gmelinii (Rupr.) 
Rupr. and 87% of Betula platyphylla Suk. The burned site 
was characterized by a young open-canopy stand, dominated 
by L. gmelinii (88.4%) mixed with B. platyphylla (9.9%, 
Table 1). Picea obovata Ledeb. was also present at a low 
density. Understory vegetation included Populus tremula 
L., Salix caprea L., Sorbus sibirica Hedl., Alnus fruticosa 
Rupr., Sambucus sibirica Nakai, Padus asiatica Kom., Ribes 
pauciflorum Turcz. ex Pojark., Rosa acicularis Lindl., Sor-
baria sorbifolia (L.) A. Br., Rubus idaeus L. and Spiraea 
media F. Schmidt. The unburned site was approximately 
124 years old (no major fire disturbance within 80 years). 
The forest was dominated by L. gmelinii (64.7%), followed 
by B. platyphylla (32.5%) and P. tremula (2.6%). Seedlings 
of Pinus pumila (Pall.) Regel and P. obovata were also pre-
sent, and Rhododendron dauricum L. dominated the shrub 
layer. Understory vegetation included Maianthemum inter-
medium Worosch., Vaccinium vitis-idea L., Calamagrostis 
sp. and Carex globularis L.

Field sampling

In August 2019, 60 soil cubes (5 × 5 cm × 10 cm depth, 
after removing litter) were collected using a hand trowel 
from a 1-ha area within and around the permanent plot at 
each forest stand. Sampling points were randomly chosen 
but were separated by ≥ 5 m to avoid spatial autocorrela-
tions (Lilleskov et al. 2004; Pickles et al. 2012). All plant 
roots were collected from each soil sample, and EM roots 
were morphologically differentiated based on color, branch-
ing patterns, textures, and the characteristics of emanating 
hyphae and rhizomorphs (Agerer 2001) under a dissecting 
microscope. Three EM root tips, if available, per morpho-
type per soil sample were collected for molecular analyses. 
Morphological separation was conducted within 3 weeks of 

soil collection. The root tip samples were stored in cetyl 
trimethyl ammonium bromide (CTAB) solution at 4 °C until 
processing. EM roots were found in 119 soil samples.

Molecular analyses

Total DNA was extracted from 1519 root tips using the 
CTAB method described by Nara et al. (2003). Molecular 
identification of fungal taxa was performed as described 
by Miyamoto et al. (2015) with some modifications. The 
internal transcribed spacer (ITS) region (ITS1-5.8S-ITS2) 
was amplified primarily using the ITS5 and ITS4 primers 
(White et al. 1990). Additionally, the ITS0F forward primer 
(Tedersoo et al. 2008) and several reverse primer pairs (LA-
W, LB-W, ITS4B, LR22, and ITS4CG) (Gardes and Bruns 
1993; Hopple and Vilgalys 1994; Tedersoo et al. 2008; Bah-
ram et al. 2011) were used when the aforementioned primer 
pair failed to amplify the fungal ITS region. Polymerase 
chain reaction (PCR) was performed with the EmeraldAmp 
PCR Master Mix (TAKARA), following the manufacturer’s 
instructions. Amplified products were checked using gel 
electrophoresis in 1.2% agarose gels (0.5× TAE buffer). A 
total of 1469 root tips (96.7%) were successfully amplified 
by PCR. Amplicons were purified using ExoSAP-IT Express 
(Thermo Fisher Scientific) and sequenced using ITS1 and/or 
ITS4 primers on an Applied Biosystems 3730xl DNA Ana-
lyzer (Applied Biosystems, Foster City, CA, USA), follow-
ing the manufacturer’s instructions. The obtained sequences 
were manually corrected using chromatograms with ATGC 
ver. 8 (Genetyx, Tokyo, Japan). Clean and long sequences 
(> 350 bp) were clustered into operational taxonomic units 
(OTUs) at a 97% similarity cutoff using the ATGC soft-
ware, which produced 160 OTUs. BLAST searches were 
conducted to determine the fungal identity using known 
sequences in the NCBI databases. We additionally used the 

Table 1   Site descriptions

The soil parameter values are the mean ± SE
DBH diameter at breast height

Burned site Unburned site

Larix gmelinii Betula platyphylla Picea obovata Total Larix gmelinii Betula platyphylla Populus tremula Total

Composition (%) 88.4 9.9 1.7 64.7 32.5 2.6
Basal area (m2 ha−1) 12.9 1.4 0.3 14.6 15.0 7.6 0.6 23.2
Density (count ha−1) 128 300 24 452 436 484 28 948
DBH (cm) 35.8 7.8 11.5 18.7 14.1 16.7
Soil parameters

  Total carbon (%) 27.64 ± 1.21 26.57 ± 1.13
  Total nitrogen (%) 1.16 ± 0.06 1.03 ± 0.04
  pH 5.31 ± 0.06 4.68 ± 0.03

57Mycorrhiza (2021) 30:55–66

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



	

1 3

usearch_global tool in vsearch to assign fungal nomenclature 
with a ≥ 97% match to UNITE ver. 8.2 species hypotheses 
(Abarenkov et al. 2020). EM fungal guild was defined based 
on Tedersoo et al. (2010), Tedersoo and Smith (2013) and 
the UNITE database (Koljalg et al. 2013). Thirteen OTUs 
were saprotrophs, endophytes or fungi with unknown func-
tional guilds, and were excluded from statistical analyses 
(Table S1).

Host root identification was primarily confirmed by 
restriction fragment length patterns (RFLPs). First, Larix, 
Picea, and angiosperms were distinguished by RFLPs of 
the trnS-G intergenic spacers of the chloroplast DNA region 
amplified using the trnS and trnG primers (Hamilton 1999). 
The RFLPs of the trnS-G region separated target conifer 
hosts, while the pattern was identical among angiosperm 
hosts (Betula, Populus and Salix). Therefore, angiosperm 
hosts were secondly differentiated by RFLPs of the chlo-
roplast trnL region amplified using the trnL_c and trnL_d 
primers (Taberlet et al. 1991). The PCR products for both 
regions were digested using the restriction enzyme HinfI, 
and RFLPs were compared to reference patterns generated 
from sequenced samples by electrophoresis in 2.5% aga-
rose gels. Samples with unclear RFLP patterns were sub-
jected to direct sequencing. The plant trnL regions (trnL_c 
and trnL_d, trnL_e and trnL_f primer pairs; Taberlet et al. 
1991) or the ITS region (17SE and 26SE primer pair; Sun 
et al. 1994) were amplified and sequenced depending on 
amplification and reading success. These molecular analyses 
enabled unequivocal identification of the host genera. The 
host species were assigned according to the tree composi-
tion information.

Soil analysis

Total carbon (C), total nitrogen (N) and pH were measured 
for each soil sample (to a depth of 10 cm) after removing 
plant roots for morphotyping. Soil samples were oven-dried 
at 60 °C for 24 h and passed through a 2-mm mesh sieve. 
Soil pH was measured in a 1:5 soil to water ratio using a 
glass electrode (HI 2215, HANNA Instruments, Germany). 
The total C and N concentrations were measured using the 
combustion method coupled with gas chromatography/ther-
mal conductivity detection using a TOC-L analyzer (Shi-
madzu, Japan). Each soil sample was homogenized using a 
mortar and less than 100 mg of soil was encased in tin foil 
for combustion.

Statistical analyses

Statistical analyses were conducted using R ver. 3.2.3. 
(R Core Team 2015) with a statistical significance of α 
< 0.05, unless otherwise noted. The frequency of each 
EM fungal OTU was defined as the number of soil samples 

containing that OTU (i.e., its presence or absence in each 
sample). Species rarefaction curves and Chao2 estimated 
richness were generated using EstimateS software ver-
sion 9.1.0. (Colwell 2019). Fisher’s exact test was used 
to determine whether the frequencies of each OTU were 
different between the burned and unburned sites.

The EM fungal composition with different fire events 
(burned vs. unburned), host genus and soil properties, was 
treated as a community unit. Soil samples were assigned 
to four levels of C concentrations (quantiles of Q1–Q4 
from low to high). A preliminary analysis revealed that 
the C and N concentrations in the soil were strongly posi-
tively correlated (P < 0.001), with no significant differ-
ences between the burned and unburned sites (P > 0.09). 
Thus, the soil groupings (Q1–Q4) were constructed from 
low to high C and N concentrations independent of the 
fire event (Table S2). We excluded OTUs that occurred 
only in one sample from the community analyses. The 
dissimilarity among the EM fungal composition was visu-
alized using a non-metric dimensional scaling (NMDS) 
procedure with the Bray–Curtis distance and 999 permu-
tations. The effects of fire, host and soil C and N concen-
trations on EM fungal composition were tested using the 
perMANOVA (permutation multivariate analysis of vari-
ance) in the adonis function and variation partitioning in 
the varpart function implemented in the “vegan” package 
of R. The soil pH was significantly higher at the burned 
than the unburned site (P < 0.001; Table 1). Therefore, 
the soil pH was considered a part of the fire effect on the 
fungal composition and was not included in the commu-
nity analyses. Instead, the potential influence of soil pH on 
the occurrence (incidence) of individual fungal OTUs was 
tested using a logistic regression model with a binomial 
error distribution (the glm function in the “stats” package). 
Individual fungal OTUs that occurred at both sites and in 
> 4 samples were tested.

Results

Molecular analysis results

A total of 147 EM fungal OTUs were detected, of which 
13 and 134 OTUs were Ascomycota and Basidiomycota, 
respectively (Table S1). The four most OTU-rich genera 
were Tomentella (32 OTUs), Cortinarius (31), Russula 
(11) and Piloderma (9). The Chao2 estimated OTU rich-
ness of this area was 225.1 ± 26.3 (SD). The host genus 
was identified in 1459 root tips (96.1%). The majority of 
root tips were Larix (43.9%) and Betula (31.8%), followed 
by Populus (22.1%), Picea (2.0%) and Salix (0.2%).
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Richness

The observed EM fungal richness was significantly lower 
at the burned site than at the unburned site, based on the 
non-overlap of the 95% confidence interval of the rarefac-
tion curves (Fig. 1, Table 2). The observed richness at the 
burned site was 75.0%, 77.2% and 14.5% of that at the 
unburned site for L. gmelinii, B. platyphylla and P. tremula, 
respectively. The 95% confidence intervals of the rarefaction 
curves between the burned and unburned sites overlapped 
for L. gmelinii and B. platyphylla, indicating no significant 
decrease in OTU richness after the fire (Fig. S1). Populus 
tremula roots were scarce and the EM fungal richness was 
significantly lower at the burned site than at the unburned 
site.

Composition

Seven OTUs occurred more frequently at the burned site, 
while 3 OTUs occurred more frequently at the unburned site 
(Fig. 2a). The genus-level analysis revealed that Amphinema 
and Wilcoxina had high frequencies at the burned site, while 
Russula, Lactarius and Piloderma occurred more frequently 
at the unburned site (Fig. 2b). EM fungi that were specific 
to L. gmelinii included six Suillus species and Rhizopogon 
laricinus. Suillus cavipes and S. spectabilis were the sec-
ond- and third-most frequent taxa after Cenococcum geo-
philum OTU1. The frequency of S. grevillei (P = 0.016) at 
the burned site was significantly different from zero. Lac-
tarius uvidus (P = 0.016) and Piloderma bicolor OTU1 
(P  =  0.036) occurred more frequently at the unburned 
site (Fig. 2c). At the genus level, Suillus (P = 0.003) and 
Amphinema (P < 0.001) occurred more frequently at the 
burned site, whereas Cortinarius (P = 0.030), Lactarius 
(P = 0.021) and Russula (P = 0.029) occurred more fre-
quently at the unburned site (Fig. 2d). Cenococcum geophi-
lum OTU1, P. bicolor OTU1, Lactarius vietus and Russula 
versicolor were the four most frequently occurring taxa for 
B. platyphylla. Lactarius uvidus (P = 0.022) and L. vietus 
(P = 0.016) were found more frequently at the unburned site 
than at the burned site (Fig. 2e). At the genus level, Lactarius 
(P = 0.030) occurred more frequently at the unburned site, 
while Tomentella (P = 0.039) and Amphinema (P = 0.028) 
were more frequent at the burned site (Fig. 2f).

Putative factors influencing fungal composition

The NMDS result indicated that the EM fungal community 
composition was differentiated by fire event and host identity 
(Fig. 3). The potential effects of putative factors on the vari-
ation in EM fungal composition were tested for L. gmelinii 
and B. platyphylla as they were the dominant host species at 
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Fig. 1   Species rarefaction curves for ectomycorrhizal fungal OTU 
richness at the burned (red, triangle) and unburned (blue, circle) 
sites. The 95% confidence interval is based on 100 resamples without 
replacement

Table 2   Summary of ectomycorrhizal fungal diversity

Hosts with low frequencies (Picea and Salix) are not shown
EMF ectomycorrhizal fungi

Site Host No. of samples 
containing EMF

Observed  
richness

Chao2 estimated 
richness (± SD)

Richness per 
sample (± SE)

Shannon 
indices H′

Simpson 
indices 
(1/D)

Burned Total 59 81 122.3 ± 16.9 3.68 ± 0.22 3.68 18.68
Larix 44 42 67.9 ± 14.5 2.41 ± 0.18 3.24 15.31
Betula 33 44 69.4 ± 13.8 2.97 ± 0.27 3.33 15.00
Populus 6 9 26.5 ± 14.4 2.17 ± 0.60 2.06 6.76

Unburned Total 60 108 168.3 ± 23.9 6.85 ± 0.31 4.04 28.86
Larix 46 56 114.8 ± 30.6 4.09 ± 0.31 3.40 17.71
Betula 36 57 92.9 ± 17.4 3.83 ± 0.29 3.56 20.09
Populus 43 62 108.0 ± 21.2 3.95 ± 0.29 3.52 17.64
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both sites with sufficient amounts of fungal community data 
for comparison. The EM fungal composition was significantly 
differentiated by the fire event (F1, 14 = 3.324, R2

adj = 0.192, 
P = 0.0038) and the host (F1, 14 = 5.582, R2

adj = 0.285, 
P < 0.0001); however, soil C and N concentrations did not sig-
nificantly explain variations in the composition (F3, 12 = 0.935, 

R2 adj = 0.189, P = 0.53). Variation partitioning revealed that 
the host alone (R2 = 0.257) explained more of the variation in 
the EM fungal composition than the fire event (R2 = 0.147) or 
soil C and N concentrations (R2 = 0.009). The mean pairwise 
community distances (Bray–Curtis) between the burned and 
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unburned sites were significantly larger for B. platyphylla than 
L. gmelinii (t = 2.601, P = 0.014).

Compatibility between L. gmelinii and B. platyphylla

We considered suilloid (Molina et al. 1999; Nguyen et al. 
2016) and Leccinum (den Bakker et al. 2004) as narrow host 
range fungi and the remaining OTUs as broad host range fungi 
(Fig. 4). The proportion of shared EM fungal OTUs between 
L. gmelinii and B. platyphylla increased from the burned 
(14.7% in richness) to the unburned (28.4%) site (Fig. 4). Fish-
er’s exact test revealed that the differences were significant for 
richness (P = 0.038) and frequency (P < 0.001).

Fungal occurrence along the soil pH gradient

The change in fungal occurrence (incidence) along a soil 
pH gradient was tested for 26 fungal OTUs. Binomial tests 
showed that the soil pH was negatively associated with 
the occurrence of 6 OTUs (P. bicolor OTU1, T. terrestris 
OTU1, C. geophilum OTU1, Cortinarius comptulus, L. vie-
tus and Russula emetica), and positively associated with the 
occurrence of Amphinema byssoides (Fig. S2).

Discussion

We found that the EM fungal diversity was lower at the 
burned site than at the unburned site, and the fungal com-
position was significantly different between the two sites. 

These results suggest that the EM fungal community did 
not recover to its pre-fire levels 16 years after a fire in the 
L. gmelinii-dominated forest of Zeya in the Russian Far 
East. Previous chronosequence studies have reported that 
the recovery of EM fungal richness to the pre-fire levels 
can take < 20 years (Kipfer et al. 2011; LeDuc et al. 2013; 
Rincon et al. 2014) or longer (41–65 years) (Visser 1995; 
Twieg et al. 2007). Although large variations exist between 
studies, most studies have indicated dramatic increases in 
fungal diversity within two decades after a fire (Twieg et al. 
2007; Kipfer et al. 2011; LeDuc et al. 2013; Dove and Hart 
2017). We found that post-fire EM fungal richness was 75% 
of the nearby unburned forest. This value was similar to a 
prediction from a study on Pinus sylvestris forests in the cen-
tral Alps (Kipfer et al. 2011) and slightly lower than a pre-
diction from a global meta-analysis (Dove and Hart 2017). 
Considering the high variability among previous reports, our 
results are comparable to those of other boreal forests. We 
also found apparent differences in the EM fungal composi-
tion between the burned and unburned sites (Fig. 3). The 
burned site was characterized by the occurrence of distur-
bance-adapted fungi (Suillus, Amphinema and Wilcoxina), 
while the unburned site was characterized by the dominance 
of late-successional fungi (Lactarius, Russula and Cortinar-
ius). These results were similar to those of previous studies 
in boreal forests. For example, Amphinema and Wilcoxina 
are highly competitive early colonizers commonly found in 
fire-disturbed habitats (Mah et al. 2001; Smith et al. 2004; 
Barker et al. 2013). By contrast, the frequencies of Lac-
tarius, Russula and Cortinarius species often increase with 
time after a fire (Visser 1995; Smith et al. 2004; Twieg et al. 
2007; Holden et al. 2013). Thus, the EM fungal composition 
at our burned site is considered to be in the early- to mid-
successional stages.

Suillus was the dominant genus on L. gmelinii roots, 
with higher richness and relative frequency at the burned 
site compared to the unburned site. Suillus asiaticus, S. cf. 
aurihymenius, S. viscidus and S. grevillei were recorded 
only at the burned site, and the frequency of S. grevillei was 
significantly reduced to zero at the unburned site (Fig. 2c). 
These results suggest that Suillus species may be impor-
tant in the recovery of Larix forests after fire events. Some 
Suillus species exhibit adaptive strategies to quickly colo-
nize disturbed habitats. They produce abundant fruit bod-
ies and spores that are effectively dispersed by wind and 
mycophagous mammals (Ashkannejhad and Horton 2006; 
Peay et al. 2012; Urcelay et al. 2017; Vasutova et al. 2019). 
Their spores have high germination rates in response to 
host roots (Theodorou and Bowen 1987), but also remain 
viable for an extended time with high desiccation resistance 
(Ashkannejhad and Horton 2006; Bruns et al. 2019). Suillus 
EM roots are often found in fields immediately and within 
several years after fire events (Bruns et al. 2002; Smith 

Fig. 2   The relative frequencies of ectomycorrhizal fungal taxa at 
the burned (x-axis) and unburned (y-axis) sites for operational taxo-
nomic units (OTUs; a, c, e) and genus (b, d, f). The diagonal line 
indicates equal frequencies at both sites. Fungal taxa below the line 
occurred more frequently at the burned site, while those above the 
line occurred more frequently at the unburned site. Asterisks fol-
lowing the taxa (red-colored) indicate significantly higher frequen-
cies or frequencies significantly different from zero either at the 
burned or unburned site (Fisher’s exact test). A small amount of jitter 
(i.e., random noise) is added to the plot to prevent overlapping data 
points. Taxonomic identifiers are  Amph_1 (Amphinema byssoides), 
Amph_2 (Amphinema aff. byssoides OTU1), Cg (Cenococcum geo-
philum OTU1),  Cort_1 (Cortinarius comptulus), Cort_2 (Corti-
narius casimiri), Cort_3 (Cortinarius OTU1), Cort_4 (Cortinarius 
decipiens), Hebe_1 (Hebeloma cf. leucosarx), Huma_1 (Humaria 
hemisphaerica), Lact_1 (Lactarius uvidus), Lact_2 (Lactarius vietus), 
Lact_3 (Lactarius porninsis), Lecc_1 (Leccinum scabrum OTU1), 
Pilo_1 (Piloderma bicolor OTU1), Pilo_2 (Piloderma bicolor 
OTU3), Pilo_3 (Piloderma olivaceum OTU1), Pilo_4 (Piloderma 
bicolor OTU2), Pilo_5 (Piloderma byssinum), Russ_1 (Russula 
emetica), Russ_2 (Russula griseascens), Russ_3 (Russula versicolor), 
Russ_4 (Russula robertii), Suil_1 (Suillus spectabilis), Suil_2 (Suillus 
cavipes), Suil_3 (Suillus grevillei), Suil_4 (Suillus asiaticus), Tome_1 
(Tomentella terrestris OTU1), Tome_2 (Tomentella lateritia), 
Tome_3 (Tomentella subclavigera), Tome_4 (Tomentellopsis cf. sub-
mollis), Tube_1 (Tuber OTU2) and Ceno (Cenococcum). Taxonomic 
identifiers are not shown for taxa with low frequencies for clarity.

◂
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et al. 2004; LeDuc et al. 2013), inferring their resilience to 
fire disturbances. Moreover, the above traits may increase 
the competitiveness of Suillus over late-successional EM 
fungi, partly due to strong priority effects (Kennedy and 
Bruns 2005). For example, Suillus forms long rhizomorphs 
(Agerer 2001) and can expand vegetatively over broad 
areas (Bonello et al. 1998; Bruns et al. 2002), which ena-
bles effective colonization of new roots in habitats where 
root density is low (Peay et al. 2011). Although Rhizopogon 
species are an important component of post-fire EM fungal 
communities on Pinus and Pseudotsuga (Baar et al. 1999; 
Twieg et al. 2007; Cowan et al. 2016; Glassman et al. 2016), 
R. laricinus was only detected at the unburned site at low 

frequency (0.0073%). This species was recently discovered 
to be associated with Larix in northeastern Siberia (Miy-
amoto et al. 2019). Our results imply that the species may 
be less common in this area, but more studies are required 
to better understand the ecological roles of this species in 
relation to fire disturbances.

Although the overall frequency of the genus Suillus 
decreased at the unburned site, S. cavipes and S. specta-
bilis were the second- and third-most dominant taxa on L. 
gmelinii at both sites. This finding implies that some Suillus 
species may be important for Larix growth throughout for-
est development. Larix forests are historically linked and 
well-adapted to fire disturbances in eastern Eurasia. Frequent 
fires may enhance seed germination and growth of shade-
intolerant Larix seedlings by improving seedbed conditions 
and reducing the canopy of competing trees (Alexander 
et al. 2018). Without fires, Larix may be replaced by late-
successional, shade-tolerant trees, such as Picea (Schulze 
et al. 2012; Shuman et al. 2017). Subsequently, Suillus may 
be replaced by other broad host range fungi with decreasing 
dominance of the compatible host in the absence of fire dis-
turbances. The highly specialized symbiosis between Larix 
and Suillus is assumed to be genetically regulated through a 
long history of plant-fungal coevolution (Liao et al. 2016). 
Frequent surface fires common in eastern Eurasia may be 
important in maintaining Larix forests (de Groot et al. 2013; 
Rogers et al. 2015) and are likely to be concomitant with 
tightly linked Suillus species.

The EM fungal composition was distinct between L. 
gmelinii and B. platyphylla. Betula platyphylla was mainly 
associated with broad host range taxa, such as Lactarius, 
Piloderma and Tomentella, while narrow host range taxa 
on Betula (i.e., Leccinum spp.; den Bakker et al. 2004) were 
relatively uncommon. The fungal composition was more 
differentiated between the burned and unburned sites for 
B. platyphylla than for L. gmelinii (Fig. 3), indicating a 
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high variability in the EM fungal composition for B. platy-
phylla. However, the EM fungal richness at the burned site 
was 75–77% of that at the unburned site for both hosts, 
implying similar recovery rates for fungal richness after the 
fire. We also found that the proportion of shared EM fungi 
between the two hosts increased in the mature forest (28.4% 
in richness) compared with the burned site (14.7%). This 
pattern agrees with a previous study that showed that the rel-
ative abundance of compatible fungi between Pseudotsuga 
menziesii and B. papyrifera increased with time in Canadian 
boreal forests (Twieg et al. 2007). Moreover, Buscardo et al. 
(2012) reported that the EM fungal compatibility between 
Pinus pinaster and understory shrubs was reduced at sites 
with short fire intervals, whereas it was maintained at sites 
with long fire intervals. These observations imply that the 
fungal compatibility between pioneer Pinaceae hosts and 
coexisting angiosperms may increase over time after fires.

In this study, the EM fungal inoculum potential was 
expected to be high at the burned site for several reasons. 
Firstly, because 28% of L. gmelinii trees survived the 2003 
fire, some of the EM roots and mycelia probably survived, 
thereby acting as a primary source for the rapid coloniza-
tion of new roots at the burned site. Secondly, some EM 
fungi produce heat-resistant propagules and form “propagule 
banks” in deeper soils, which remain viable after fire distur-
bances (Izzo et al. 2006; Peay et al. 2009). Propagule banks 
were likely present in the studied forest because they often 
function as inoculum sources for regenerating seedlings in 
fire-disturbed habitats (Baar et al. 1999; Stendell et al. 1999; 
Glassman et al. 2016). Lastly, the burned and unburned sites 
in this study were only 800 m apart; thus, the spores of late-
successional EM fungi could have readily dispersed from 
nearby forests. These settings imply that EM fungal inocula 
may not be a limiting factor for fungal colonization at the 
burned site. Rather, the specific site conditions, including 
the host community and soil properties, may explain the 
differences in the EM fungal community structure between 
the two sites. For example, we found a substantial reduc-
tion in EM fungal richness for P. tremula, which was less 
abundant after the fire (Table 1, Fig. S1). Moreover, the 
post-fire tree density was less than half (i.e., 47.7%) of the 
unburned site, indicating reduced host root densities and 
habitat spaces for EM fungal colonization. Our burned site 
was characterized as a young open-canopy stand, while EM 
fungal diversity has been reported to increase with canopy 
closure (LeDuc et al. 2013). EM fungal composition is also 
affected by various soil properties (Jonsson et al. 1999; Kra-
nabetter et al. 2009; Cox et al. 2010). Thus, despite a high 
inoculum potential, altered habitat conditions after a fire 
may restrict late-successional EM fungi from dominating 
in burned forests.

Soil pH is an important factor influencing EM fungal 
community structure (Cox et al. 2010; van der Linde et al. 

2018). EM fungal richness generally increases in slightly 
acidic soils (Tedersoo et al. 2014), which can be influenced 
by competition with bacteria and saprotrophic fungi that 
prefer a high soil pH (Yamanaka 2003; Barcenas-Moreno 
et al. 2011). Thus, the decreased EM fungal richness at our 
burned site may be partly attributed to increased soil pH, 
which might have been influenced by ash and charcoal depo-
sitions following the fire (Bryanin and Sorokina 2019). We 
noted that the occurrence of some EM fungal OTUs was 
associated with soil pH conditions (Fig. S2). We found that 
three fungal OTUs (C. comptulus, L. vietus and R. emetica) 
appeared to prefer low pH conditions, but they were also 
abundant at the unburned site; thus, their occurrence may be 
attributed to soil pH or other unmeasured factors that cova-
ried with the fire event. By contrast, two OTUs (P. bicolor 
OTU1 and T. terrestris OTU1) appeared to prefer low soil 
pH independently from the fire event (Fig. S2). These fungi 
might specifically prefer microhabitats with low soil pH at 
the burned site.

Our burned and unburned sites were only 800 m apart 
along a continuous forest on a uniform topography, indicat-
ing that the observed contrasting pattern in EM fungal com-
munity structure between the two sites was likely attributable 
to fire effects. However, our sampling was limited to a single 
comparison of burned and unburned forest sites, which lim-
its our ability to distinguish site-specific patterns from local 
or regional patterns. Thus, the observed patterns should be 
considered with caution when generalizing the pattern of 
the post-fire EM fungal community structure in this region. 
However, our findings are consistent with those of previous 
studies in boreal forests that reported reduced EM fungal 
richness and the dominance of disturbance-adapted fungi 
following fires (Mah et al. 2001; Smith et al. 2004; Kipfer 
et al. 2011; Barker et al. 2013; LeDuc et al. 2013 Yang et al. 
2020). Thus, the present study provides valuable information 
on the EM fungal community structure of a post-fire forest in 
the Russian Far East, one of the regions where such informa-
tion is scarce (Dove and Hart 2017; Taudière et al. 2017). 
More studies are needed to improve our understanding of 
the effect of fire on forest biota, particularly for specialized 
host-fungus symbiotic partners in ecological and evolution-
ary contexts.
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