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Abstract
Purpose Russian boreal forests represent a globally significant carbon stock, been suffering from frequent surface fires that 
modify natural cycles of elements, including heavy metal (HM). The behaviour of HM, exerting various ecosystem effects, 
is not well understood, especially in northern larch forest ecosystems affected by fires.
Methods The dynamic of Fe, Pb, Mn, Zn, Cu, Co, Ni and Cr was studied in the 850-day field decomposition experiment 
in a natural unburned larch stand (Larix gmelinii (Rupr.)) and adjacent burned forest on the Russian Far East. We observed 
mass loss, HM release/accumulation and correlation of HMs with soil properties.
Results The litter decomposed slower in the burned site, with pronounced differences in the late decomposition stage. The 
concentrations of HMs except Mn had increased by the end of the experiment in both forest sites. Among all the HMs, Fe, Cr 
and Ni showed pronounced accumulation in burned stand compare to the unburned forest. Fire does not modify the patterns 
of HM release/accumulation but significantly alters the final values. In unburned forest, soil pH and water content strongly 
influenced only Fe dynamics, whereas, on burned site, soil properties correlate with the group of HMs.
Conclusion Our experiment showed that HM dynamics are coupled with the mass loss only in the late stages of litter decom-
position. We found that fire’s legacy effect in natural larch forests could last over 15 years, creating favourable conditions 
for significant accumulation of Fe, Pb, Cr and Ni.
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1 Introduction

Forest litter decomposition is an essential part of the biogeo-
chemical cycles and recognized as a two-phased process of 
mass loss, accumulation and release of elements. Decompo-
sition is mainly mediated by plant traits, litter chemistry and 
environmental factors in forests vastly changed by human 
activity (Cornwell et al. 2008). Among other influences, fre-
quent fires represent repeating forest disturbance acting as a 
powerful, long-lasting factor of ecosystem processes, includ-
ing decomposition (Brennan et al. 2009). If the dynamics of 
major elements in burned forests are well understood, then 

heavy metal (HM) behaviour during decomposition in fire-
affected forests has been largely overlooked.

HMs are a group of elements participating in metabolic 
and redox processes, biologically essential in small 
concentrations (Lenart-Boron and Boron 2014). However, 
high concentrations of the HMs have ambiguous ecosystem 
effects, including suppressing the soil microbes (Laskowski 
and Berg 1993), mycelia and soil respiration (Rühling et al. 
1973). These elements attract scientific attention due to 
their ability to form highly resistant complexes with organic 
matter and the tendency to accumulate in forest litter and 
upper soil horizons (Berg and McClaugherty 2014a, b; 
Laskowski and Berg 1993; Tyler 2005). For example, Fe 
creates a stronger bond with humic acids in a high pH, but 
migration Cr is hindered in acidic conditions (Boguta et al. 
2019; Catrouillet et al. 2014; Vodyanitskii 2008; Yue et al. 
2019). Therefore, depending on environmental conditions, 
HMs might suppress the decomposition with implications 
to ecosystem functioning (Berg and Ekbohm 1991; Hattori 
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1992; Laskowski et al. 1994; De Santo et al. 2002; Srivastava 
et al. 2017).

The data on the behaviour of HM in fire-affected 
forests are very scarce. Thus, modern investigations in 
the Mediterranean eucalypt and pine-dominated forests 
demonstrate that post-fire runoffs carrying HM significantly 
reduce stream microbial decomposer communities (Carvalho 
et  al. 2019; Pradhan et  al. 2020). The upper horizon of 
Cambisols in fire-affected larch forests in the Russian far 
East may accumulate a substantial stock of HMs (Bryanin 
and Sorokina 2019). The investigations from boreal larch 
forests in north China (Kong et al. 2018) and pine forests 
in East Siberia (Sosorova et al. 2013) revealed that HM 
concentrations returned to the pre-fire level in 8–11 years 
after a fire. However, long-lasting pyrogenic changes of soil 
properties (pH, temperature, moisture) and decreased litter 
input previously found in the study area (Bryanin et al. 2020) 
may create conditions for HM accumulation in the litter layer. 
To our best knowledge, investigations of HM dynamics 
coupled to litter decomposition in fire-affected forests have 
never been conducted in the boreal larch forests of Eurasia.

Decomposing litter may serve as temporary or long-
term storage for some elements and be a source for others 
(Rustad and Cronan 1988). Incubation of litterbags is one 
of the most common approaches to studying decomposition 
in forest ecosystems, often including investigation of major 
elements dynamics. To date, we know that decomposition is 
a two-phased process comprised of early and late stages in 
which major elements dynamics are tightly coupled to mass 
loss (Prescott et al. 1993; Berg and McClaugherty 2014b). 
We know that decomposition is restrained in the fire-affected 
boreal forest even after decades since fire, and this effect 
is more pronounced in the later stage of decay (Hart et al. 
2005; Bryanin et al. 2020). If the major element dynamic 
during decomposition stages is well understood, our knowl-
edge of HMs is very limited even in background forests and 
missing in fire-affected forests.

Generally, the dynamics of HMs during decomposition 
depend on their chemical properties, qualities of forest lit-
ter (Gautam et al. 2019; He et al. 2016; Zhang et al. 2014), 
soil pH, moisture, nutrient concentrations, dissolved organic 
matter (De Santo et al. 2002; Lomander and Johansson 
2001) and microbial activity (Tyler 2005). A comprehensive 
study from the temperate European forest has revealed that 
HMs either release slowly (e.g., Zn) or accumulate (e.g., Fe) 
during litter decomposition, except Mn, which often easily 
releases (Tyler 2005). Therefore, it was clearly shown that 
HMs have particular dynamics during the decomposition 
process. Considering possible HMs hazardous effect, we 
must better understand their dynamics during litter decom-
position in fire-affected forests.

Despite broad recognition of the importance of vast 
boreal forests and litter decomposition as one of the primary 

sources of soil organic matter, the role of HMs in this pro-
cess remains unclear. This study aimed to reveal HM dynam-
ics during litter decomposition in fire-affected larch forests. 
The following questions have been addressed: (1) if decom-
position is restrained in burned forests, does this affect HM 
dynamics? (2) Do HMs undergo stages of decomposition 
as mass loss, or do they have their independent dynamics? 
(3) Does HM release/accumulation differ in the fire-affected 
forest, and do soil properties affect these processes?

This study investigates the changes of HM (Fe, Mn, Zn, 
Cu, Co, Cr, Ni and Pb) concentrations and their release/
accumulation in the larch needles during 3-year decomposi-
tion. We performed a field litterbag study in the unburned 
boreal larch forest, and the adjacent forest burned 15 years 
ago. We analyze HM dynamics, mass loss and soil proper-
ties, which allows us to reveal distinct patterns of post-fire 
HMs dynamic during litter decomposition in larch forests 
on the Russian Far East.

2  Material and methods

2.1  Site characteristics

The field experiment was conducted in Zeysky State Nature 
Reserve, which spans the Tukuringra mountain range in the 
Russian Far East. Natural larch/birch (Betula platyphylla)/
(Larix gmelinii (Rupr.) Rupr.) stands represent typical vege-
tation cover of eastern Siberia and the Far East. Our research 
area (53° 50′ N, 127° 10′ E) located on a gentle south-facing 
slope of the mountain range in two stands: one was a back-
ground larch/birch forest with evenly distributed tree species 
and at least 100 years have not been influenced by the forest 
fire. We consider this stand as an unburned site (Unburned). 
Within the forest stand, there is a clear border of fire that 
occurred in the year 2003. It was a long-lasting surface fire 
that consumed the litter layer, charred the upper humus hori-
zon of soil and killed most birches and part of larch trees, 
but mature trees of larch have survived. This stand was con-
sidered a burned site (Burned). Study territory belongs to 
the protected area, and according to surveys of Zeya Nature 
Reserve, this stand was uniform in terms of forest and soil 
characteristics before the fire event in 2003. Therefore, we 
recognize all observed differences in our experiment as fire 
legacy or effect of the post-fire environmental difference 
between sites. Fifteen years after the fire, some soil charac-
teristics and HM concentration in the litter layer still differ 
significantly (Table 1).

Study sites were distributed in the discontinuous permafrost 
region with a mean annual temperature of −0.7  °C. The 
minimum month average temperature occurs in January 
(−19.3 °C), with the maximum in July (+19.1 °C). The sum 
of annual precipitation is 528 mm, most of which falls as rain 
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from July to September (Amur Center for Hydrometeorology 
and Environmental Monitoring 2015). The soil in the study 
area refers to Dystric Cambisols formed on granite rocks (WRB 
2014). Detailed soil characteristics and profile morphological 
description is presented in previous studies (Procopchuk and 
Bryanin 2007; Bryanin and Sorokina 2019).

2.2  Litterbag experiment

For this investigation, we selected larch needles based on the 
domination of larch species in the boreal forests of Eastern 
Eurasia (Sato et al. 2016). We used the field litterbag approach 
to investigate the decomposition. Litterbags were made of white 
nylon with a mesh size of 50 µm; bag size was 100 × 100 mm with 
sealed edges. We chose a 50-µm mesh size to prevent washing out 
of litter fragments and root ingrowth. Such an approach allowed 
us to focus on microbial and fungi decomposition, excluding soil 
fauna, showing a contradictory effect on the decaying process 
(Makita and Fujii 2015). We used the same litter material on 
both sites. Each bag contained about 5 g of air-dried larch litter 
in six replications per sampling date. The bags were randomly 
set out on an area of 400  m2 within unburned and burned sites. 
Samples were placed on the forest floor and slightly covered 
by fresh litter to create more tight contact with the surface. We 
did not bury litterbags into the litter layer, resulting in mass loss 
overestimation (Xie 2020). The experiment started in 2016 and 
lasted for 3 years, with an intermediate sampling of litterbags 

after 75, 140, 500 and 850 days. After sampling, litterbags were 
transported directly to the laboratory. Samples were cleaned from 
all adhering materials, and dried at 40 °C to the constant weight. 
For chemical analysis, samples were ground to pass through a 
0.2-mm sieve.

2.3  Chemical analysis

All laboratory procedures were performed at the Analytical 
Centre of Mineral-Geochemistry Investigation in the Insti-
tute of Geology and Nature Management. Dissolved organic 
C and N were analyzed in the soil water extract by combus-
tion with a TOC-L analyzer; total forms of organic C and N 
were analyzed on the same machine on the module for solid 
sample measurement, SSM-5000A (Shimadzu, Japan). Soil 
pH was measured electrometrically from a 1:2.5 soil  H2O 
using Hanna HI 2215 (HANNA Instruments Deutschland 
GmbH, Germany). During the measurement for the suspen-
sion, the pH was stable. The concentration of HMs in soil 
and litter samples was analyzed by digesting with a mixture 
of hydrofluoric acid and aqua regia. Element total concen-
trations were measured by atomic absorption spectrometry 
(180-50S, Hitachi, Tokyo, Japan).

2.4  Calculations and statistical analysis

The remaining mass was calculated in each sampling day 
and for the whole experiment period using Eq. (1):

where M0 – the initial mass of litter, g; Mt – the mass of 
litter in t day.

Release/accumulation (%) was calculated as the dynamic 
of mass-normalized element concentration following 
Eq. (2):

where M0 – the initial mass of litter, g; Mt – the mass of 
litter in t day; C0 – initial concentration of HM, mg  kg−1; 
Ct – concentration of HM on the t day, mg  kg−1.

Firstly, all data were checked for normality and homoge-
neity of variances. Differences in mass loss between sam-
pling days checked after data normalization by ANOVA fol-
lowed the Tukey HSD test. Relation element concentration 
and mass loss were estimated by Pearson correlation after 
data normalization. Principal component analysis (PCA) was 
employed to reveal tendencies and patterns in all datasets. 
All statistical analysis was done in R-studio (R Development 
Core Team 2020).

(1)Mass remaining(%) =
Mt

M0

× 100%

(2)

Release ∕ accumulation (%) =
Mt × Ct −M0 × C0

M0 × C0

× 100%

Table 1  Soil (0–5 cm) and litter characteristics

Characteristic Unburned Burned

Bulk density, g  cm−3 0.191 ± 0.01a 0.223 ± 0.04a
Water content, % 65 ± 1.5a 60 ± 2.0b
Clay, % 31.22 ± 3.09a 29.4 ± 4.07a
pH  (H2O) 4.8 ± 0.1a 5.4 ± 0.1b
CEC, meq 100  g−1 19.1 ± 1.8a 25.3 ± 3.9a
P2O5, mg  kg−1 191 ± 27.1a 363 ± 54.6b
K2O, mg  kg−1 484 ± 82.9a 556 ± 69.5a
Total organic C, % 20.1 ± 2.0a 21.1 ± 2.9a
Total N, % 0.77 ± 0.08a 0.86 ± 0.11a
Dissolved organic C, mg  l−1 43.9 ± 4.35a 24.1 ± 2.04b
Dissolved organic N, mg  l−1 1.11 ± 0.17a 0.77 ± 0.09b
Total litter stock, g  m−2 251 ± 20.4a 94.4 ± 11.2b
Fe, g  kg−1 10.3 ± 0.52a 10.4 ± 1.98a
Cu, mg  kg−1 11.0 ± 0.37a 13.4 ± 1.31a
Zn, mg  kg−1 70.2 ± 6.12a 108 ± 9.87b
Mn, mg  kg−1 942 ± 133a 518 ± 65.2b
Co, mg  kg−1 5.27 ± 1.16a 2.63 ± 1.08b
Cr, mg  kg−1  < 0.01  < 0.01
Pb, mg  kg−1 10.1 ± 1.81a 8.9 ± 1.29a
Ni, mg  kg−1 11.4 ± 0.55a 11.4 ± 1.62a
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3  Results

3.1  Litter decomposition and HM dynamic

Needle decomposition in unburned and in burned sites did 
not differ until the 140th day (p = 0.507); mass loss during 
the period accounted for 25% (Fig. 1). From the 500th day, 
the burned site decomposition rate started to reduce, and at 
the end of the experiment, mass loss in the unburned site was 
much higher (67.5%) than in the burned (44.2%) (p < 0.01).

The concentration of HM at the early stages of decay 
(0–140 days) differed little from the initial; change of con-
centrations mainly occurred in the late stages (500–850 days, 
Fig. 2). The final concentration at day 850 of the experiment 
of Cu, Zn, Fe, Co, Ni, Cr and Pb increased and Mn decreased 
related to initial concentration both in the unburned and 
burned sites (Table 2). Despite equality of initial concentra-
tions at the end of the experiment, Fe on the burned site was 
twofold higher and Cr 1.7 lower than those on the unburned 
site (p < 0.05, Table 2). At the end of the experiment, there 
were no significant differences in Cu, Zn, Mn, and Co con-
centrations between burned and unburned sites; the only 
apparent trend of reducing the element concentrations in 
the burned site.

Initially, mass loss and HM concentrations did not cor-
relate on both sites (Fig. 3). But in the late decomposition 
stage, we found a strong correlation for the majority of HMs 
and mass loss. For the majority of studied HMs, this correla-
tion was similar on both sites. Thus Cu, Fe, Zn and Pb were 
positively correlated to mass loss. The group of HMs (Ni, 
Cr and Mn) negatively correlated to mass loss on the burned 
site, while positive or no relation (Mn) was on unburned. 

The dynamic of Co was independent of mass loss on both 
studied sites.

3.2  Effect of soil properties on the HM release/
accumulation

Release/accumulation of all studied HMs on both study sites 
was unidirectional; however, the final values of release/accu-
mulation were site-dependent. Thus, Fe, Cr, Pb and Ni show 
accumulation, while Mn, Zn, Co and Cu showed release at 
the end of the experiment (Fig. 4). Overall accumulation was 
more pronounced in the burned site, whereas release – on 
the control. The apparent difference observed for Fe and Pb 
showed 4- and twofold higher final accumulation in burned 
site compared to the unburned (p < 0.05, Fig. 4).

The effect of soil properties was element- and site-
dependent. Thus, on the unburned site, the PCA depicts 
several groups of HMs with interact release (Fig. 5a). How-
ever, soil properties are included in other PC unrelated to 
groups of HM. The only release of Fe and soil pH pointed 
in the same direction. On the burned site, Fe Cr, Ni and Cu 
pointed in the same direction with soil pH and dissolved 
nitrogen, whereas soil water content pointed in the opposite 
direction (Fig. 5b).

4  Discussion

4.1  Dynamics of HMs during decomposition

Our results show that the concentrations of HMs, except Mn, 
increase to the end of the experiment from twofold for Cu, 
Zn and Co up to sixfold for Fe and 15-fold for Pb (Table 2, 
Fig. 2). We observed significantly restrained late-stage lit-
ter decomposition on the burned plot (Fig. 1) along with 
higher final concentrations of Fe and Cr (Table 2). In gen-
eral, our result supports previous studies in natural forests 
that found an increase of HM concentrations with decom-
position time (Laskowski and Berg 1993; Tyler 2005; Brun 
et al. 2008; Gautam et al. 2019). Therefore, answering our 
first question, we conclude that a long-lasting fire legacy, 
in terms of modified soil parameters, had restrained litter 
decomposition but did not alter the overall dynamics of 
HMs. However, we revealed a stage-dependent correlation 
between HMs and mass loss. Thus, in the early stage, when 
the mass loss was more rapid, there was no significant cor-
relation between mass loss and HM concentration, and this 
pattern was equal in unburned and burned forests (Fig. 3). 
Overall, in the late stage of our experiment in both studied 
forests, most HMs significantly correlating with mass loss 
showed similar trends except Ni and Cr. These elements are 
shown a decreasing trend in the burned forest and increasing 
in the unburned (Fig. 3). Therefore, answering our second 

Fig. 1  Percent mass remaining (% of initial litter mass). Data are 
means; whiskers indicate standard errors for n = 6. The asterisk 
denotes a significant (p < 0.05) difference between sites based on 
ANOVA followed by Tukey HSD
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Fig. 2  Dynamics of HM concentrations during decomposition time. Data are means; whiskers indicate standard errors for n = 6
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question, we conclude that HM dynamics coupled the mass 
loss only on the late stage of decomposition, but this relation 
was site-dependent.

Interestingly, the most pronounced changes in HM 
concentrations occurred in the late stage when the 
decomposition rate decreased compared to the initial 
(Figs. 1 and 2). One of the possible explanations of observed 
phenomena is that, in the beginning, the rate of decomposition 
is higher than the release of HMs later; when decomposition 
rate decreases, these rates became equal and showed a relation. 
Previous papers studying forest litter decomposition also 
proposed this mechanism (Gautam et al. 2019; Lomander and 
Johansson 2001). Another possible way of HM accumulation 
in late stages might be accumulation from the outer soil 
environment. In the late stage, due to microbial and fungal 
activity, larch needles became porous and might be easily 
penetrated by percolating, containing HMs from the outer soil 
and litter. Previous studies mainly explained HM accumulation 
from external sources (Brun et  al. 2008), including air 
pollution (Rühling et al. 1973; Laskowski et al. 1995). Our 
study was performed in a nature reserve far from industrial 
activities and busy roads; therefore, we consider observed 
accumulation as immobilization from litter and underlying 
soil layer. The mechanism of this transport of HMs might 
be explained by percolating soil solution and simultaneous 
fungal activity. Soil fungi are known to concentrate and retain 
Fe and other elements (Stark 1972; Levinskaite et al. 2009; 
Kabata-Pendias and Szteke 2015). We suggest that the above 
accumulation mechanism is most likely in our system due 
to the high Fe concentration in the organic layer (Table 1). 
Calculations of Fe mass in abscised litter covering litterbags 
during two seasons of the experiment indicated that this source 
might have contributed only 14% of observed accumulated 
Fe (Table 1, Fig. 2). A similar calculation showed that the 
proposed mechanism of soil solution and fungal HM transport 
might occur for most studied elements except Mn and Cr. As 

the concentration of Cr in the surrounding litter was < 0.1 mg/
kg, its input from the litter layer to litterbags was unlikely. 
Simultaneously to decay, litter decomposition is the process 
of synthesis of various organic substances with high cation 
exchange capacity. In such conditions, HMs are easily bounded 
to newly formed organic compounds and accumulated in 
litterbags. Usually, these bounds are tight that protect soil biota 
from the hazardous effect of HMs; however, soil properties 
considerably mediate the dynamic of these compounds.

4.2  Effect of soil properties on HM dynamics

Element concentration is an unsteady characteristic reflecting 
only the given sampling event in the whole decaying process. 
In contrast, the accumulation or release of the element during 
decomposition could provide an overall understanding of 
the element behaviour and its possible implications for the 
ecosystem. Although in our experiment, most HMs increased 
in decaying needles; only Fe, Pb, Ni and Cr accumulated in 
absolute value, and the most pronounced accumulation was 
observed for Fe and Pb (Fig. 4). Despite release/accumulation 
processes being unidirectional in both study sites, we noticed 
more release for all HMs in the unburned forest and more 
accumulation in the burned. The most considerable difference 
observed for Ni, Pb and Fe is that these HMs accumulate 3 
and 9 times more on the burned site than on the unburned 
after 3 years of the experiment. Given that we used the same 
litter for this investigation, observed phenomena could be 
attributed to the effect of fire-altered environment and soil 
properties. Previous studies highlighted the importance of 
ecological factors as mediators of HM release/accumulation 
during decomposition (De Santo et al. 2002; Goya et al. 2008; 
He et al. 2020; Lomander and Johansson 2001).

We found out that 15 years after the fire, concentrations of the 
most studied HMs except Zn, Mn and Co had returned to pre-fire 

Table 2  Initial and the final 
concentrations of heavy metals 
on unburned and burned sites

Data in the table are means ± standard errors, p values represent the difference of final HM concentration 
compared to initial based on t-test. Different letters denote the significant difference of HM concentrations 
between sites based on ANOVA followed by Tukey HSD

Metals Initial concentration Final concentration

Unburned Burned

mg·kg−1 mg·kg−1 p values mg·kg−1 p values

Cu 3.79 6.47 ± 0.74a 0.0012 4.96 ± 0.34a 0.0001
Zn 20.8 58.3 ± 8.09a 0.0053 38.8 ± 4.86a 0.0216
Mn 697 596 ± 40.5a 0.0465 507 ± 54.6a 0.0131
Cr 0.91 4.06 ± 0.77a 0.0178 2.35 ± 0.22b 0.0115
Ni 0.71 2.95 ± 0.66a 0.0162 1.94 ± 0.18a 0.0007
Co 0.19 0.46 ± 0.09a 0.0192 0.25 ± 0.06a 0.1285
Pb  < 0.1 1.42 ± 0.54a 0.0519 1.45 ± 0.41a 0.0256
Fe 211 1412 ± 224a 0.0017 3035 ± 354b 0.0025
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level (Table 1), proving the earlier findings in boreal forest 
ecosystems (Kong et al. 2018; Sosorova et al. 2013). However, 
soil properties essential to HM dynamics remain altered in the 
burned site. Thus, we noticed the rise of  pHH2O, decreasing soil 
water content, dissolved organic carbon, and microbial activity 
in the burned site (Table 1; Bryanin et al. 2020). These soil 
properties could be responsible for the larger immobilization 
of HMs with high accumulation factors such as Fe, Pb and Cr.

The formation of stable complexes of Fe with organic matter 
increases with the rise of pH, while its solubility decreases 
(Boguta et al. 2019; Catrouillet et al. 2014). In our system, 
higher pH and lower water content on burned sites create 
favourable conditions for the HM accumulation (Fig. 4). The 
reduced accumulation of Fe in litterbags on the unburned 
forest could be attributed to its complexation with water-
soluble organic matter and migration to underlying soil layers, 

Fig. 3  Correlation of HM concentrations with mass loss in early and late decomposition stages
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as previously described by Staaf (1980). The concentration of 
dissolved organic carbon (DOC) was higher (p < 0.05) in the 
unburned site even 15 years after the fire (Table 1). A decadal 
post-fire decrease of DOC was noticed in larch stands in Central 
Siberia (Startsev et al. 2017). The higher soil water content 
derives more DOC to be released in the soil solution, making 
complexation with Fe likely (Gmach et al. 2020; Rustad and 
Cronan 1988). In our system, DOC concentration in unburned 
forest correlates to water content, soil pH and concentrations 

of Fe, Mn and Cu, supporting the above mechanism (Table 1, 
Fig. S1a). On the burned site, water content, pH and DOC 
located in different directions on PCA ordinates, proving largely 
altered soil properties even 15 years after the fire (Fig. S1b). 
However, Fe, Cu, Cr and Ni grouped with DOC in the same 
direction as on unburned site (Fig. S1B).

All mechanisms considered above for Fe could apply to 
other elements from the group of HMs. For example, Cr and 
Ni show similar behaviour, closely related to pH and water 
content (Vodyanitskii 2008; Yue et al. 2019). However, Pb 
has a different dynamic: we observed a threefold larger accu-
mulation in the burned site compare to those on the unburned 
(Fig. 4) In our opinion, this is explained not by environmental 
factors but restrained mass loss (Fig. 1). Pb concentration’s 
dynamic was almost identical on both sites showing a steady 
increase during the experiment (Fig. 2) and a strong positive 
correlation to mass loss (Fig. 3). Supporting this assumption, 
Pb did not correlate to soil properties and lied to another direc-
tion from other elements and soil properties on PCA (Fig. 5). 
Same as accumulation, the concentration of Pb was also posi-
tively correlated only to mass loss on both sites (Fig. S1).

Our results demonstrate that forest fire, at least for 15 years, 
could modify later stages of mass loss and HM behaviour dur-
ing litter decomposition. The lack of differences in mass loss 
and HM dynamics between burned and unburned sites in the 
early stages of destruction could suggest that abiotic and biotic 
conditions changed by the fire do not play a critical role both 
in decomposition and HM dynamics when leaching of low-
molecular substances predominate.

Fig. 4  Final release/accumulation of HMs calculated by Eq. (2). Zero 
is the initial mass-normalized concentration at the beginning of the 
experiment

Fig. 5  Biplot obtained from the analysis of the main components of soil properties and HM release/accumulation after 850 days of the experi-
ment on unburned (a) and burned (b) sites
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5  Conclusions

Field investigation of the temporal dynamics of heavy metals 
during litter decomposition in fire-affected forests is of great 
significance for improving our mechanistic understanding 
of the legacy effect of fire. As a case of such an approach, 
our 3-year field experiment showed that the legacy effect 
of fire derives some fluctuations, but generally, most heavy 
metals concentrations increased during litter decomposition 
in both studied forests. However, due to the discrepancy of 
mass loss rates and element release, we observed accumu-
lation in absolute value only for Fe, Pb, Cr and Ni. Moreo-
ver, restrained mass loss and altered soil properties have led 
to a more considerable accumulation of these elements in 
the burned forest than the unburned. This effect may slow 
down the turnover of some metals in post-fire boreal forests. 
Besides, our results revealed the stage-dependent dynamics 
of heavy metals during litter decomposition. This finding, 
along with the larger accumulation of heavy metals in post-
fire forest cooperatively, highlights the importance of tem-
poral variability in accessing the legacy effect of fire during 
litter decomposition.

Even though our investigation was held in the nature 
reserve, excluding possible pollution, we observed the leg-
acy effect of fire, creating favourable conditions for heavy 
metals accumulation. These conditions have led to up to 
9-time larger element accumulation from natural sources 
such as litter and soil. Therefore, in the case of a pollution 
source near the burned forest, a long-lasting favourable con-
dition for heavy metals accumulation may lead to a much 
considerable increase of elements in the litter layer with pos-
sible hazardous implications to the environment.
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