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A B S T R A C T

Boreal forest soils are a huge carbon sink, but the forests are regularly subjected to fire disturbance. The fine
roots in these forests substantially contribute to soil carbon accumulation. Charcoal is a fire by-product that
influences ecosystem processes including soil organic matter decomposition. However, the extent to which
charcoal affects fine root decomposition is unclear. We performed field litterbag experiments over 515 days
involving the incubation of fine larch roots with varying concentrations of charcoal in soil. At the end of ex-
periment the loss of root mass in samples incubated with higher concentrations of charcoal was greater (42% and
40%) than that in the control (30%) and a treatment containing the average measured soil charcoal content
(27%). The degree of mass loss generally increased with increasing charcoal content. Our result provides the first
field evidence that fire-derived charcoal may enhance the decomposition of fine larch roots, and consequently
CO2 release from boreal forests.

Boreal forest soils are a large sink of global carbon, with fine root
litter making a large contribution to this sink (Berg and McClaugherty,
2014). Forest fires affect large areas of the boreal zone each year
(Conard and Ivanova, 1997; Weber and Stocks, 1998). Charcoal for-
mation is a by-product and lasting legacy of these fires in boreal forests,
and is a major factor controlling carbon dynamics in this environment.
Fire-derived charcoal is deposited on the soil surface and incorporated
into the soil, where it influences physiochemical and biological pro-
cesses (Pluchon et al., 2016; Singh and Cowie, 2014). Numerous studies
have shown ambiguous charcoal effects on the mineralization of soil
organic matter. Short-term laboratory experiments have shown that
charcoal promotes the decomposition of native soil organic matter,
depending on the charcoal formation temperature (Luo et al., 2011),
soil characteristics, and vegetation type (Pluchon et al., 2016). In
contrast, field evidence indicates that charcoal may enhance the rate of
humus decomposition over the long-term (Wardle et al., 2008). How-
ever, other studies have demonstrated negative effects of charcoal on
decomposition, because of the stabilization of labile soil organic carbon
via its sorption onto the charcoal (Cross and Sohi, 2011; Lu et al., 2014;
Singh and Cowie, 2014). There is also evidence that charcoal does not
promote litter decomposition (Abiven and Andreoli, 2011), and that its
influence depends on the charcoal quality (Zimmerman et al., 2011). In
summary, organic matter decomposition in the presence of charcoal has
received much scientific attention, but the relationship is highly

context-dependent. However, little is known about the effect of char-
coal on the decomposition of fine roots, which are known to have a
significant ecosystem function, especially in boreal forests.

Fine roots (< 2 mm in diameter) comprise only a small part of the
ecosystem biomass, but their turnover is a major mechanism of carbon
accumulation in boreal forest soils (Gower et al., 2001; Vogt et al.,
1995). Fine roots proliferate in the upper soil, where various levels of
fire-derived charcoal occur (Bryanin and Makoto, 2017; Makoto et al.,
2011b). Given that fine roots develop and decompose in the proximity
of charcoal, we hypothesized that charcoal influences the decomposi-
tion of fine larch roots, and that the influence is dependent on charcoal
content in boreal forest soils.

The study was performed at 554 m.a.s.l. in an experimental plot
(54°0′ N, 127°2′ E) in the Zeysky Nature Reserve, on the southern slope
of the Tukuringra mountain range in the Russian Far East. The forest is
dominated by Larix gmelinii (Rupr.) and the forest floor is covered
mostly by Vaccinium vitis-idaea L. Previous studies involved organic
matter and charcoal being mixed in equal proportions (Pluchon et al.,
2016; Wardle et al., 2008), but this is not an accurate representation of
the soil conditions in post-fire forests. We prepared the incubation mix
to mimic the range of charcoal contents (0–3.9 g kg−1) measured in the
upper 10 cm of soil. We produced charcoal for the experiment using
larch branches that were heated in a muffle furnace at 450 °C for
45 min. The temperature and duration used was typical of the
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smouldering and charring processes that occur in boreal forest surface
fires (Makoto et al., 2011a; Pluchon et al., 2014). The resulting charcoal
was crushed and sieved to create homogenous particles of 0.5–2.0 mm
in size as in (Makoto et al., 2010, 2011a).

Approximately 1.0 g of fine roots (0.5–2 mm) that had been washed,
sorted, and dried at 40 °C were thoroughly mixed and placed in nylon
litterbags (10 × 10 cm; mesh size: 45 μm). The experimental control
comprised root bags lacking charcoal. The experimental treatments
included: (i) a ‘background’ treatment comprising root bags having a
charcoal content equal to the mean measured value (0.95 g kg−1); (ii)
root bags having a charcoal content twice that of the mean content
(1.9 g kg−1); and (iii) root bags having a charcoal content equal to the
maximum charcoal content measured in the field (3.9 g kg−1).

The experiment was started in May 2015, and experimental samples
were retrieved on days 70, 150, 365 and 515. Each control and treat-
ment included 5 replicates for each sampling date (80 litterbags each in
total). In the plots we replaced the surface soil layer with a subsurface
soil containing traces of charcoal (Gundale and DeLuca, 2007). The
litterbags were inserted into a small slit made at a 45° angle in the
upper 10 cm of mineral soil in roots original sites, and the soil was
lightly pushed over the bags to ensure that contact occurred.

Following harvest the samples were dried to a constant weight at
40 °C, and the loss of mass from the initial state was calculated. We
checked for normality of the data using the Shapiro–Wilk test.
Differences between treatments were assessed by the Wald's pairwise
comparison test using a generalized linear mixed model (GLMM); the
incubation period was the random factor (e.g. Makoto et al., 2012). All
analyses were undertaken using the nlme package in R software version
3.3.1 (R Core Team, 2016).

In all treatments there was a rapid loss of fine root mass from 25%
to 17% during the initial period (0–70 days), regardless of the amount
of charcoal added (Fig. 1). The differences in the mass loss rates among
treatments were significant only at the end of the experiment (515 days,
P < 0.05, Fig. 1). At this time, relative to the control and background
treatment the mass loss was 42% in the 1.9 g kg−1 charcoal treatment,
and 40% in the treatment containing the maximum charcoal level.
Thus, the fine roots in these treatments decomposed significantly faster
than in the control and background treatment, which did not differ
significantly in mass loss at any time during the experimental period
(Fig. 1).

The results indicate that charcoal enhanced the late stages (> 70
days) of fine root decomposition. This finding is consistent with those of
other studies showing that charcoal affects only the late stages of leaf
litter decomposition (Kerré et al., 2017; Singh and Cowie, 2014). In-
itially the roots decompose because of the release of labile organic

matter through hydrolysis (Berg, 1984). Mass loss during later stages of
decomposition results from the slow degradation of lignin and cellulose
(Harmon et al., 2009). This suggests that charcoal may enhance the
microbial decay of these substances during the later stages of fine root
decomposition.

Although root decomposition in the root-bag method differs from
the natural process, this method has been broadly used in comparative
studies worldwide (e.g. Freschet et al., 2013). Our results suggest that
fire-derived charcoal causes a detectable and content-dependent shift in
fine root decomposition in boreal forests. The mass loss increased as a
function of charcoal content, but the rate of loss was not linear. Low
levels of charcoal did not cause mass loss (Fig. 1), but a charcoal level
twice the average, and the maximum natural charcoal level, had similar
effects. The charcoal content at the study site varied from 0 to
3.9 g kg−1, demonstrating a significant spatial variation in charcoal
content that is attributed to the occurrence of charred tree logs and
stumps. Our findings suggest that soils in post-fire boreal systems in-
clude hot spots for the decomposition of fine roots.

Our results show that depending on its concentration, fire-derived
charcoal can promote the late stages of root decomposition and en-
hance carbon release from boreal soil, at least during the two years
following fire. This study was a preliminary investigation of the effect
of charcoal on fine root decomposition. To enhance our understanding
of the ecosystem function of charcoal, future long-term non-destructive
studies are needed to determine the underlying mechanisms.
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